Amino acid metabolites that regulate G protein signaling during osmotic stress
نویسندگان
چکیده
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
منابع مشابه
Evaluation of gill metabolites of Iranian sturgeon fingerlings Acipenser persicus at different levels of water salinity using HNMR method
Abstract In the present study, 180 Persian sturgeon fries at releasing weight with average weight of 1.8 ± 0.6 g were exposed to three different salinity levels including 0 (fresh water), 6 and 12 ppt in 96-hour and 10-day periods for measuring their gill metabolites by H-NMR based metabolomics. The results showed that changes in salinity caused changes in the metabolites involving in osmotic ...
متن کاملGlobal Metabolic Responses to Salt Stress in Fifteen Species
Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses ...
متن کاملADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.
We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrat...
متن کاملNMR Profiling of Metabolites in Larval and Juvenile Blue Mussels (Mytilus edulis) under Ambient and Low Salinity Conditions
Blue mussels (Mytilus edulis) are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids) to help maintain osmotic balance and cellular function during low salinity exposure. H...
متن کاملBOTANICAL BRIEFING The interface between metabolic and stress signalling
†Background It is becoming increasingly clear that stress and metabolic signalling networks interact and that this interaction is important in plant responses to herbivory, pathogen attack, drought, cold, heat and osmotic stresses including salinity. At the interface between these two major signalling systems are the hormone abscisic acid (ABA) and signalling factors including protein kinases a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017